Hi! I am an Associate Professor of Biomedical Data Science and, by courtesy, of Computer Science and Electrical Engineering at Stanford University. I work on making machine learning more reliable, human-compatible and statistically rigorous, and am especially interested in applications in human disease and health. Several of our algorithms are widely used in tech and biotech industries. I received a Ph.D from Harvard in 2014, and was a member of Microsoft Research, a Gates Scholar at Cambridge and a Simons fellow at UC Berkeley. I joined Stanford in 2016 and am excited to be a two-time Chan-Zuckerberg Investigator and the faculty director of the university-wide Stanford Data4Health hub. I'm also a member of the Stanford AI Lab. My research is supported by the Sloan Fellowship, the NSF CAREER Award, and Google, Amazon and Adobe AI awards.
Email: jamesz at stanford dot edu Office: Packard 369
News
11/24: Recommendations on LLM usage in peer reviews published in Nature.
10/24: Excited to share 11 new papers in NeurIPS. Check it out here.
8/24: check our our primer on LLMs for biology in Nature Methods. ADMET-AI in Bioinformatics. SCGP in Cell Reports Methods.
7/24: LLM peer reviews published in NEJM AI; SPRITE in Bioinformatics.
6/24: check out TextGrad, our PyTorch-for-text framework to optimize AI agents! Nuclei.io published in Nature BME. AI model card analysis published in Nature Machine Intelligence.
5/24: EchoNet AI has received FDA clearance!
5/24: 12 new ICML papers. Check it out here!
4/24: NEJM AI paper on the economics of medical AI. TMLR papers on watermarking and membership inference.
3/24: SyntheMol published in Nature Machine Intelligence (genAI for small molecule drugs).
2/24: Alignability testing in PNAS; off-label cancer drugs study in Cell Reports Medicine.
2/24: TISSUE: uncertainty-aware spatial transcriptomics published in Nature Methods.
1/24: New ICLR papers on DataInf, LLM safety-training, analyses of datacards and zoology.
1/24: New NEJM AI paper using LLM to simplify medical consent for patients.
12/23: Contrastive feature learning published in JMLR.
11/23: Excited to co-organize the ML in Compbio Conference.
10/23: New NEJM AI paper studies clinical adoption of AI using billions of insurance claims.
9/23: New Neurips papers on 1) OpenDataVal; 2) atypicality; 3) AI art on Twitter; 4) DataPerf 5) factorized contrastive learning.
9/23: New npj Digital Medicine papers on predicting cardiovascular risk and assessing dermatology textbooks.
8/23: New in Nature Medicine: we used Twitter data to build a visual-language AI for pathology.
7/23: New Science paper on implications of AI-predicted race variables. Patterns paper shows that GPT detectors are biased against non-native speakers.
5/23: See our Nature Biotech paper on who counts as an inventor. In silico spatial proteomics with 7-UP published in PNAS Nexus. Proteomic biomarkers of resilience to Alzheimer's published in Nature Communications.
4/23: 4 new ICML papers on data valuation with Data-OOB, moon-shaped correlation of ML performances, provable subgroup-discovery, and discover-and-cure spurious correlations.
4/23: EchoNet randomized clinical trial published in Nature. Generative AI amplifies human bias published in FAccT.
3/23: New Cell paper on advances in ML for cancer. Play our ArtWhisperer game and see how good you are at human-AI collaboration! Point-of-care EchoNet published. TrueImage clinical study public in JAMA Dermatology.
2/23: MetaViz published in Nature Communications (also selected for Outstanding Paper Award at 2023 Joint Statistics Meeting); EchoNet-Ped published in JASE; Joined the editorial board of New England Journal of Medicine AI.
1/23: 5 new ICLR papers on: why vision-language models act like bag-of-words (top 2%); post-hoc concept bottleneck (top 10%); fair classifier on imbalanced data; fair classifier with small samples; and DrML. 2 new AISTATS papers on understanding multimodal contrastive learning and freeze-and-train.
1/23: Dynamic Visualization published in Nature Computational Science; dog precision cancer paper published in npj Precision Oncology.
11/22: SpaceGM (GNN for spatial proteomics) published in Nature Biomedical Engineering.
9/22: 7 new NeurIPS papers on: improving SHAP attribution; human-AI collaboration, sparse data shifts, modality gap, mixReg augmentation, SkinCon, and history of ML API shifts.
8/22: Science Advances paper on disparity in skin cancer AI and new Diverse Derm data; Nature Machine Intelligence article on data-centric AI; analysis of 50 years of Stanford research commercialization published in Patterns.
6/22: new Nature Medicine paper on precision cancer treatment.
5/22: 4 new ICML papers: explaining AI mistakes, using ML cheaply w/ frugalMCT, improving calibration w/ mix-up, and better robustness with selective augmentation.
5/22: RNA-ODE published in J. Molecular Biology; f-gan in ISIT; human-AI advice in AIES.
4/22: Very honored that Trial Pathfinder is selected as a Top Ten Clinical Research Achievement.
4/22: In silico IHC published in Cell Reports Methods, DynaMorph in Mol. Bio. Cell and evaluation of COVID data reporting in PLoS Global Health, forecasting clinical trial efficiency in AAPS.
1/22: 3 new ICLR papers: MASA assesses model shifts; Domino finds fine-grained mistake clusters in AI (oral); MetaShift offers a resource of 1000s of distribution shifts.
1/22: 3 new AISTATS papers: Beta-Shapley improves and unifies data valuation (oral); MLDemon
monitors ML performance over time; adapt ML to users with gradual performative gradient.
1/22: Honored to be selected as a Chan-Zuckerberg Investigator for the 2nd term.
10/21: NeurIPS paper shows adversarial training improves transfer learning; EBioMed paper infers biomarkers from cardiac videos; 2 PSB papers predict diseases from scRNA-seq and eye-motion.
9/21: New JAMA Dermatology paper quantifies limitations in datasets used for derm AIs.
6/21: New Nature Biotech paper uses patent citations to quantify research translational impact. Study of GPT-3 biases published in Nature Machine Intelligence.
5/21: ICML papers on performative gradient descent and task augmentation for meta-learning.
4/21: BABEL published in PNAS and new single-cell aging score published in eLife.
4/21: Our Nature paper uses real-world data and AI to make clinical trials more inclusive.
4/21: Our Nature Medicine paper identifies limitations in how medical AI are evaluated.
2/21: Honored to receive the Sloan Research Fellowship.
1/21: 5 new papers at 2021 AISTATS and ICLR: how competition over data affects ML; how to use cheap unlabeled data to make models more robust; efficient data Shapley computation; how to delete data from trained predictors; and mixup as regularization.
10/20: TrueImage improves photo quality for telehealth (PSB paper). ALICE shows how to use natural language explanation of contrasts to efficiently teach ML (EMNLP paper).
9/20: FrugalML, Neuron Shapley and MOPO are accepted at NeurIPS. FrugalML selected for oral presentation as top 1% of submissions.
7/20: Single-cell characterization of aging effects published in Nature.
6/20: Our AI to generate spatial transcriptome from histology is in Nature Biomedical Engineering.
6/20: Excited and honored to received the NSF CAREER Award!
6/20: New papers: statistical data value (ICML), improving dialogue systems (ACL), learning data alignment (ICLR), deep learning for proteomics (J. Proteomics), RNA-GPS (RNA), linking variants to genes (Bioinformatics), and SARS-CoV-2 subcellular localization (Cell Systems).
3/20: Our video AI system to assess heart function is published in Nature.
1/20: Our interactive ML platform is published in Nature Machine Intelligence.
11/19: Our paper on how sex and gender analysis improves science and engineering is in Nature.
9/19: Our papers on deleting data from ML (spotlight) and learning human meaningful concepts will be presented at NeurIPS.
7/19: Our machine learning for genome editing paper is published in Nature Biotechnology.
5/19: AdaFDR won the RECOMB Best Paper. Extended version in Nature Communications.
5/19: At ICML we'll present papers on data valuation, concrete autoencoder, conditional features and adaptive Monte Carlo.
4/19: Check out our two knockoff papers in AISTATS.
2/19: Interpretation of neural network is fragile in AAAI and VetTag in Nature Digital Medicine.
1/19: Feedback GAN for protein design published in Nature Machine Intelligence.
11/18: Check out our interactive deep learning for genomics primer in Nature Genetics.
9/18: Excited to receive a NIH Center for Excellence in Genomics and a NIH R21.
7/18: Our paper on designing fair AI is published in Nature.
6/18: Honored to receive a Google Faculty Award and a Tencent AI award.
4/18: NLP reveals 100 years of stereotypes is published in PNAS and highlighted in Science.